Abstract
Background
Transcutaneous spinal stimulation (TSS) and neuromuscular electrical stimulation (NMES) can facilitate self-assisted standing in individuals with paralysis. However, individual variability in responses to each modality may limit their effectiveness in generating the necessary leg extension force for full body weight standing. To address this challenge, we proposed combining TSS and NMES to enhance leg extensor muscle activation, with optimizing timing adjustment to maximize the interaction between the two modalities.
Methods
To assess the effects of TSS and NMES on knee extension and plantarflexion force, ten neurologically intact participants underwent three conditions: (1) TSS control, (2) NMES control, and (3) TSS + NMES. TSS was delivered between the T10 and L2 vertebrae, while NMES was delivered to the skin over the right knee extensors and plantarflexors. TSS and NMES were administered using a 15 Hz train of three 0.5 ms biphasic pulses. During the TSS + NMES condition, the timing between modalities was adjusted in increments of ¼ the interval within a 15 Hz frequency, i.e., 66, 49.5, 33, 16.5, and 1 ms.
Results
NMES combined with TSS, produced synergistic effects even on non-targeted muscle groups, thereby promoting leg extension across multiple joints in the kinematic chain. The sequence of NMES or TSS trains relative to each other did not significantly impact motor output. Notably, a delay of 16.5 to 49.5 ms between interleaved TSS and NMES pulses, each delivered at 15 Hz, results in more robust and synergistic responses in knee extensors and plantarflexors.
Conclusions
By adjusting the timing between TSS and NMES, we can optimize the combined use of these modalities for functional restoration. Our findings highlight the potential of integrated TSS and NMES protocols to enhance motor function, suggesting promising avenues for therapeutic applications, particularly in the rehabilitation of individuals with SCI.
Funder
Foundation for the National Institutes of Health
Craig H. Neilsen Foundation
Wings for Life
Publisher
Public Library of Science (PLoS)