PrestoCell: A persistence-based clustering approach for rapid and robust segmentation of cellular morphology in three-dimensional data

Author:

Wu Yue,Brust-Mascher IngridORCID,Gareau Melanie G.,De Loera Jesus A.,Reardon ColinORCID

Abstract

Light microscopy methods have continued to advance allowing for unprecedented analysis of various cell types in tissues including the brain. Although the functional state of some cell types such as microglia can be determined by morphometric analysis, techniques to perform robust, quick, and accurate measurements have not kept pace with the amount of imaging data that can now be generated. Most of these image segmentation tools are further burdened by an inability to assess structures in three-dimensions. Despite the rise of machine learning techniques, the nature of some biological structures prevents the training of several current day implementations. Here we present PrestoCell, a novel use of persistence-based clustering to segment cells in light microscopy images, as a customized Python-based tool that leverages the free multidimensional image viewer Napari. In evaluating and comparing PrestoCell to several existing tools, including 3DMorph, Omipose, and Imaris, we demonstrate that PrestoCell produces image segmentations that rival these solutions. In particular, our use of cell nuclei information resulted in the ability to correctly segment individual cells that were interacting with one another to increase accuracy. These benefits are in addition to the simplified graphically based user refinement of cell masks that does not require expensive commercial software licenses. We further demonstrate that PrestoCell can complete image segmentation in large samples from light sheet microscopy, allowing quantitative analysis of these large datasets. As an open-source program that leverages freely available visualization software, with minimum computer requirements, we believe that PrestoCell can significantly increase the ability of users without data or computer science expertise to perform complex image analysis.

Funder

NIH

National Center for Complementary and Integrative Health

NSF

Publisher

Public Library of Science (PLoS)

Reference26 articles.

1. Microglia and macrophages in brain homeostasis and disease;Q Li;Nature Reviews Immunology,2018

2. Microglia and Central Nervous System–Associated Macrophages—From Origin to Disease Modulation;M Prinz;Annual Review of Immunology,2021

3. Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes;TR Hammond;Immunity,2019

4. Evaluating microglial phenotypes using single-cell technologies;R Sankowski;Trends in Neurosciences,2022

5. Dendritic organization in the neurons of the visual and motor cortices of the cat;DA Sholl;J Anat,1953

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3