The impact of size on middle-ear sound transmission in elephants, the largest terrestrial mammal

Author:

O’Connell-Rodwell Caitlin E.ORCID,Berezin Jodie L.,Dharmarajan Anbuselvan,Ravicz Michael E.ORCID,Hu Yihan,Guan Xiying,O’Connor Kevin N.,Puria Sunil

Abstract

Elephants have a unique auditory system that is larger than any other terrestrial mammal. To quantify the impact of larger middle ear (ME) structures, we measured 3D ossicular motion and ME sound transmission in cadaveric temporal bones from both African and Asian elephants in response to air-conducted (AC) tonal pressure stimuli presented in the ear canal (PEC). Results were compared to similar measurements in humans. Velocities of the umbo (VU) and stapes (VST) were measured using a 3D laser Doppler vibrometer in the 7–13,000 Hz frequency range, stapes velocity serving as a measure of energy entering the cochlea—a proxy for hearing sensitivity. Below the elephant ME resonance frequency of about 300 Hz, the magnitude of VU/PEC was an order of magnitude greater than in human, and the magnitude of VST/PEC was 5x greater. Phase of VST/PEC above ME resonance indicated that the group delay in elephant was approximately double that of human, which may be related to the unexpectedly high magnitudes at high frequencies. A boost in sound transmission across the incus long process and stapes near 9 kHz was also observed. We discuss factors that contribute to differences in sound transmission between these two large mammals.

Funder

NIDCD of National Institute of Health

Amelia Peabody Charitable Fund

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. What middle ear parameters tell about impedance matching and high frequency hearing;S Hemilä;Hearing Research,1995

2. Scaling of the mammalian middle ear;S. Nummela;Hearing Research,1995

3. Morphology of the Mammalian Ossicula auditûs;AH Doran;Zoological Journal of the Linnean Society,1877

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3