Numerical investigation of seismic amplification characteristics in loess ridge region of Xiji, northwest China

Author:

Peng DaORCID,Bo Jingshan,Chang Chaoyu,Qi Wenhao,Li Xiaobo

Abstract

The seismic effects on sloped terrain, which are of paramount importance for engineering design and earthquake risk mitigation, have always been a central focus of earthquake engineering research. In this study, generalized geometric models of loess ridges at varying heights were created, and a three-dimensional nonlinear numerical model was established using FLAC3D. Seismic ground motion time histories at different frequencies and actual earthquake ground motion records were input into the model to analyze the peak acceleration amplification effects experienced by the surface of loess ridges when subjected to SV waves. The study’s outcomes reveal that seismic amplification on the slopes of loess ridges is characterized by non-linearity with respect to slope height. Instead, it exhibits rhythmic variations, with the rate of change in these rhythms increasing in correspondence with the frequency of seismic motion and the height of the slope. Under low-intensity seismic motion, a linear increase in acceleration amplification is observed at the ridge’s crest concerning the height of the loess ridge. However, under high-intensity seismic motion, the relationship between amplification and slope height becomes less significant. Typically, the peak acceleration at the ridge’s crest is reported to be 1.5 to 2.5 times that observed at the slope’s base. The amplification effect at the ridge’s crest is more pronounced in the low-frequency and high-frequency segments when compared to the mid-frequency range. Conversely, significant amplification is observed in the high-frequency range in the lower sections of the slope near the base. It is further noted that the amplification effect at the ridge’s crest displays distinct behavior at different frequencies, characterized by narrow frequency bands of maximum amplification, with peak amplification factors exceeding 10 in some cases. These research findings have practical significance and provide valuable references for engineering construction and seismic risk mitigation planning in loess regions.

Funder

National Natural Science Foundation of China

Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration

Publisher

Public Library of Science (PLoS)

Reference38 articles.

1. Effects of site conditions on earthquake ground motion and their applications in seismic design in loess region;L. M. Wang;Journal of Mountain Science,2017

2. Ground‐motion observations at Hotel Montana during the M 7.0 2010 Haiti earthquake: Topography or soil amplification?;D. Assimaki;Bulletin of the Seismological Society of America,2013

3. Observed effects of topography on ground motion;L. L. Davis;Bulletin of the Seismological Society of America,1973

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3