Succession and climatic stochasticity induce long-term decline of a forest browser

Author:

Long Eric S.ORCID,Tham Enoch J.,Ferrer Ryan P.

Abstract

Removal of predators and creation of early seral habitat have, in many systems, caused substantial population growth of herbivores. Hyperabundant herbivores, in turn, induce cascading ecosystem effects, but few studies have investigated long-term browser density trends in relation to succession and stochastic climate events. Here, we use annual, empirical population estimates of a forest browser to relate forest succession to long-term decline of an herbivore that prefers early seral habitat. From 2007–2021, concurrent with reduced timber harvest, we used line-transect distance sampling to document annual changes in Columbian black-tailed deer (Odocoileus hemionus columbianus) density on a mid-sized (17.3km2) predator-free island. We documented successional changes associated with forest aggradation and decreased forage quality for deer: early successional shrub/scrub habitat declined 3.8%/year; timber volume increased 4.5%/year; and canopy coverage increased 2.5%. In 2007–2008, deer densities were the greatest observed (~44/km2), but then an historic snowstorm reduced deer density by 39%. From 2010–2021, as forests continued to mature, deer density decreased 4.0%/year, declining to 20 deer/km2. Using a multivariate approach to combine habitat variables (i.e., early seral coverage, timber volume, and canopy closure) into a measure of forest maturation, we found a significant negative relationship between deer density and forest aggradation. Thus, consistent with predictions for bottom-up limited browsers, we observed significant annual declines in a deer population throughout an extended period of forest regrowth. Despite declines, deer density on the island exceeds mainland densities, and overbrowsing likely continues to disrupt ecosystem processes.

Funder

M.J. Murdock Charitable Trust

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3