Numerical simulation of rock blasting under different in-situ stresses and joint conditions

Author:

Rong Hai,Li NannanORCID,Cao Chen,Wang Yadi,Li Jincheng,Li Mingda

Abstract

High primary rock stress can limit the generation of rock cracks caused by blasting, and blasting usually shows different rock breaking states under different primary rock stress conditions. There are a large number of naturally formed joints in rock mass, due to the limitations of laboratory tests, a numerical model of jointed rock mass was established using LS-DYNA software to investigate the evolution of blasting damage under various in-situ stresses and open joints. In this simulation, using the Lagrange-Euler (ALE) procedure and the equation of state (JWL) that defines explosive materials, the study considered different joint thicknesses (2cm, 4cm, and 6cm), joint angles (0°, 30°, 60°, and 90°), and in-situ stress conditions (lateral stress coefficients of 0.5, 1, and 2, with vertical in-situ stresses of 10MPa and 20MPa), through stress analysis and damage area comparison, the relationship between damage crack propagation and horizontal and vertical stress difference is explored. The research aimed to understand the mechanisms underlying crack initiation and propagation. The results show that: (1) The presence of joints exerts a barrier effect on the expansion and penetration of cracks. When explosion stress waves reach the joint surface, their propagation is impeded, leading to the diffusion of wing cracks at the joint ends. When the lateral stress coefficient and joint angle are the same, an increase in initial in-situ stress results in a reduction in the area of the blasting damage zone. (2) Under the same initial in-situ stress conditions, the area of the blasting damage zone initially increases and then decreases with an increasing joint angle. However, it remains larger than that without a joint, and there exists an optimal angle that maximizes the damage area. In the simulated conditions, the area of damage cracks is greatest when the joint angle is 60° dip angle. (3) The presence of initial in-situ stress has a certain impact on the initiation and expansion of blasting cracks. The degree and nature of this influence are not solely related to the lateral stress coefficient but also depend on the joint’s angle and thickness. When in-situ stress is present, the initial in-situ stress field’s pressure is not conducive to the initiation and propagation of blasting cracks. However, the existence of a joint has a noticeable guiding and promoting effect on crack propagation, and the pattern of crack propagation is influenced by both joint and in-situ stress conditions.

Funder

National Natural Science Foundation of China

Liaoning Provincial Department of Education

Engineering Laboratory of Deep Mine Rockburst Disaster Assessment

Liaoning Natural Science Foundation

Publisher

Public Library of Science (PLoS)

Reference36 articles.

1. Continuum discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales[J];A LISJAK;International Journal of Rock Mechanics and Mining Sciences,2014

2. Analysis of strength anisotropy of rock mass with a set of persistent joints[J];Han Zhiming;Journal of China University of Mining & Technology,2017

3. Study of the influence of joint parameters on rock mass strength based on equivalent rock mass technology[J];Yang Zhongmin;Journal of China University of Mining & Technology,2018

4. Experimental study of the deformation and strength behavior of composite rock specimens in unloading confining pressure test [J];Cheng Jianlong;Journal of China University of Mining & Technology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3