Creep constitutive modeling of the shear strength of the permafrost-concrete interface considering the stress level at -1°C

Author:

He FeiORCID,Lei Wanyu,Mao Erqing,Liu Qingquan,Chen Hangjie,Wang Xu

Abstract

The shear creep characteristics of the contact surface between the permafrost and the structure play an important role in the study of the law of deformation and the measures for the prevention and control of pile foundations. In order to study the creep law and the development tendency of the contact surface between permafrost and concrete, it is necessary to establish an accurate creep model. In this study, based on the Nishihara model, a nonlinear element and damage factor D were introduced to establish an intrinsic model of permafrost-concrete contact surfaces considering the effect of shear stress. Creep tests with graded loading of concrete and frozen silt with different roughness at -1°C were conducted using a large stress-controlled shear apparatus. The adequacy of the model was checked using the test data and the regularity of the parameters of the model was investigated. The results show that the creep curves of the contact surface obtained with the improved Nishihara model agree well with the test results and can better describe the whole process of creep of the contact surface of frozen concrete. The analysis of the experimental data shows that: the roughness of the concrete has an inhibiting effect on the creep deformation of the contact surface, When the roughness R varies from 0 mm to 1.225 mm, the specimen corresponds to a long-term strength of 32.84 kPa to 34.57 kPa. For the same roughness and creep time, the creep deformation of the contact surface is more significant with the increasing shear stress τ. The results of the study can provide a theoretical basis for the design and numerical simulation of pile foundations in permafrost regions.

Funder

National Natural Science Foundation of China

Basic Research Innovation Group Project of Gansu Province

Publisher

Public Library of Science (PLoS)

Reference36 articles.

1. Creep characteristics of frozen sand-concrete interface considering influence of interface roughness;F He;Journal of Railway Science and Engineering,2023

2. Field test study of a novel solar refrigeration pile in permafrost regions;Z H Sun;Solar Energy,2023

3. Triaxial creep tests and the visco-elastic-plastic constitutive model of hydrate formations;Y Li;Gas Science and Engineering,2023

4. Mechanical properties of the interstratified hydrate-bearing sediment in permafrost zones;Y H Li;Energy,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3