Prediction of peak oxygen consumption using cardiorespiratory parameters from warmup and submaximal stage of treadmill cardiopulmonary exercise test

Author:

Rosoł MaciejORCID,Petelczyc Monika,Gąsior Jakub S.ORCID,Młyńczak MarcelORCID

Abstract

This study investigates the quality of peak oxygen consumption (VO2peak) prediction based on cardiac and respiratory parameters calculated from warmup and submaximal stages of treadmill cardiopulmonary exercise test (CPET) using machine learning (ML) techniques and assesses the importance of respiratory parameters for the prediction outcome. The database consists of the following parameters: heart rate (HR), respiratory rate (RespRate), pulmonary ventilation (VE), oxygen consumption (VO2) and carbon dioxide production (VCO2) obtained from 369 treadmill CPETs. Combinations of features calculated based on the HR, VE and RespRate time-series from different stages of CPET were used to create 11 datasets for VO2peak prediction. Thirteen ML algorithms were employed, and model performances were evaluated using cross-validation with mean absolute percentage error (MAPE), R2 score, mean absolute error (MAE), and root mean squared error (RMSE) calculated after each iteration of the validation. The results demonstrated that incorporating respiratory-based features improves the prediction of VO2peak. The best results in terms of R2 score (0.47) and RMSE (5.78) were obtained for the dataset which included both cardiac- and respiratory-based features from CPET up to 85% of age-predicted HRmax, while the best results in terms of MAPE (10.5%) and MAE (4.63) were obtained for the dataset containing cardiorespiratory features from the last 30 seconds of warmup. The study showed the potential of using ML models based on cardiorespiratory features from submaximal tests for prediction of VO2peak and highlights the importance of the monitoring of respiratory signals, enabling to include respiratory parameters into the analysis. Presented approach offers a feasible alternative to direct VO2peak measurement, especially when specialized equipment is limited or unavailable.

Funder

POB Biotechnology and biomedical engineering of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3