Abstract
As an environmentally friendly and controllable technology, Microbially induced carbonate precipitation (MICP) has broad applications in geotechnical and environmental fields. However, the longitudinal dispersivity in MICP multi-process varies with the scale size. Ignoring the effect of the scale size of the research object on the dispersivity leads to the inaccuracy between the numerical model and the experiment data. Thus, this paper has established the relationship between the scale size and the dispersivity initially, and optimized the theoretical system of MICP multi-process reaction. When scale size increases logarithmically from 10−2 m to 105 m, longitudinal dispersivity shows a trend of increasing from 10−3 m to 104 m. The distribution of calcium carbonate is closer to the experimentally measured value when the size effect is considered. After considering the scale size, the suspended bacteria and attached bacteria are higher than the cased without considering the size effect, which leads to a higher calcium carbonate content. Scale has little effect on the penetration law of the suspended bacteria. The maximum carbonate content increases with the increase of the initial porosity, and the average carbonate shows a significant increasing trend with the increase of the bacterial injecting rate. In the simulation of the microbial mineralization kinetic model, it is recommended to consider the influence of the scale size on the MICP multi-process.
Funder
Zhejiang Water Conservancy Key Science and Technology Project
Hainan Special PhD Scientific Research Foundation of Sanya Yazhou Bay Science and Technology City
Publisher
Public Library of Science (PLoS)