An effective hotspot mitigation system for Wireless Sensor Networks using hybridized prairie dog with Genetic Algorithm

Author:

Aalsalem Mohammed Y.ORCID

Abstract

Wireless Sensor Networks (WSNs) consist of small, multifunctional nodes distributed across various locations to monitor and record parameters. These nodes store data and transmit signals for further processing, forming a crucial topic of study. Monitoring the network’s status in WSN applications using clustering systems is essential. Collaboration among sensors from various domains enhances the precision of localised information reporting. However, nodes closer to the data sink consume more energy, leading to hotspot challenges. To address these challenges, this research employs clustering and optimised routing techniques. The aggregation of information involves creating clusters, further divided into sub-clusters. Each cluster includes a Cluster Head (CH) or Sensor Nodes (SN) without a CH. Clustering inherently optimises CHs’ capabilities, enhances network activity, and establishes a systematic network topology. This model accommodates both multi-hop and single-hop systems. This research focuses on selecting CHs using a Genetic Algorithm (GA), considering various factors. While GA possesses strong exploration capabilities, it requires effective management. This research uses Prairie Dog Optimization (PDO) to overcome this challenge. The proposed Hotspot Mitigated Prairie with Genetic Algorithm (HM-PGA) significantly improves WSN performance, particularly in hotspot avoidance. With HM-PGA, it achieves a network lifetime of 20913 milliseconds and 310 joules of remaining energy. Comparative analysis with existing techniques demonstrates the superiority of the proposed approach.

Publisher

Public Library of Science (PLoS)

Reference54 articles.

1. Applications of wireless sensor networks: an up-to-date survey;D Kandris;Appl Syst Innov,2020

2. A depth-controlled and energy-efficient routing protocol for underwater wireless sensor networks;UK Lilhore;Int J Distrib Sens Networks,2022

3. Blockchain-based trust management framework for cloud computing-based internet of medical things (IoMT): a systematic review;MKI Rahmani;Comput Intell Neurosci,2022

4. Priyadarshi R, Rana H, Srivastava A, Nath V. A Novel Approach for Sink Route in Wireless Sensor Network. Microelectronics, Communication Systems, Machine Learning and Internet of Things: Select Proceedings of MCMI 2020. Springer; 2022. pp. 695–703.

5. Delay optimization and energy balancing algorithm for improving network lifetime in fixed wireless sensor networks;H V Chaitra;Phys Commun,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3