National-scale spatiotemporal patterns of vegetation fire occurrences using MODIS satellite data

Author:

Mupfiga Upenyu NaumeORCID,Mutanga Onisimo,Dube Timothy

Abstract

As the risk of climate change increases, robust fire monitoring methods become critical for fire management purposes. National-scale spatiotemporal patterns of the fires and how they relate to vegetation and environmental conditions are not well understood in Zimbabwe. This paper presents a spatially explicit method combining satellite data and spatial statistics in detecting spatiotemporal patterns of fires in Zimbabwe. The Emerging Hot Spot Analysis method was utilized to detect statistically significant spatiotemporal patterns of fire occurrence between the years 2002 and 2021. Statistical analysis was done to determine the association between the spatiotemporal patterns and some environmental variables such as topography, land cover, land use, ecoregions and precipitation. The highest number of fires occurred in September, coinciding with Zimbabwe’s observed fire season. The number of fires significantly varied among seasons, with the hot and dry season (August to October) recording the highest fire counts. Additionally, although June, July and November are not part of the official fire season in Zimbabwe, the fire counts recorded for these months were relatively high. This new information has therefore shown the need for revision of the fire season in Zimbabwe. The northern regions were characterized by persistent, oscillating, diminishing and historical spatiotemporal fire hotspots. Agroecological regions IIa and IIb and the Southern Miombo bushveld ecoregion were the most fire-prone areas. The research findings also revealed new critical information about the spatiotemporal fire patterns in various terrestrial ecoregions, land cover, land use, precipitation and topography and highlighted potential areas for effective fire management strategies.

Publisher

Public Library of Science (PLoS)

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of peat-fire-burnt areas among other wildfires using the peat fire index;International Journal of Applied Earth Observation and Geoinformation;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3