A comprehensive framework for advanced protein classification and function prediction using synergistic approaches: Integrating bispectral analysis, machine learning, and deep learning

Author:

Alquran Hiam,Al Fahoum AmjedORCID,Zyout Ala’a,Abu Qasmieh Isam

Abstract

Proteins are fundamental components of diverse cellular systems and play crucial roles in a variety of disease processes. Consequently, it is crucial to comprehend their structure, function, and intricate interconnections. Classifying proteins into families or groups with comparable structural and functional characteristics is a crucial aspect of this comprehension. This classification is crucial for evolutionary research, predicting protein function, and identifying potential therapeutic targets. Sequence alignment and structure-based alignment are frequently ineffective techniques for identifying protein families.This study addresses the need for a more efficient and accurate technique for feature extraction and protein classification. The research proposes a novel method that integrates bispectrum characteristics, deep learning techniques, and machine learning algorithms to overcome the limitations of conventional methods. The proposed method uses numbers to represent protein sequences, utilizes bispectrum analysis, uses different topologies for convolutional neural networks to pull out features, and chooses robust features to classify protein families. The goal is to outperform existing methods for identifying protein families, thereby enhancing classification metrics. The materials consist of numerous protein datasets, whereas the methods incorporate bispectrum characteristics and deep learning strategies. The results of this study demonstrate that the proposed method for identifying protein families is superior to conventional approaches. Significantly enhanced quality metrics demonstrated the efficacy of the combined bispectrum and deep learning approaches. These findings have the potential to advance the field of protein biology and facilitate pharmaceutical innovation. In conclusion, this study presents a novel method that employs bispectrum characteristics and deep learning techniques to improve the precision and efficiency of protein family identification. The demonstrated advancements in classification metrics demonstrate this method’s applicability to numerous scientific disciplines. This furthers our understanding of protein function and its implications for disease and treatment.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference66 articles.

1. Global view of human protein glycosylation pathways and functions;Katrine T. Schjoldager;Nature reviews Molecular cell biology,2020

2. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions;Pakorn Kanchanawong;Nature Reviews Molecular Cell Biology,2023

3. Critical assessment of methods of protein structure prediction (CASP)—Round XIII.;Andriy Kryshtafovych;Proteins: Structure, Function, and Bioinformatics,2019

4. DeepPPF: A deep learning framework for predicting protein family;Shehu Mohammed Yusuf;Neurocomputing,2021

5. Artificial intelligence in the prediction of protein–ligand interactions: recent advances and future directions;Ashwin Dhakal;Briefings in Bioinformatics,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3