Considerations on the use of microsensors to profile dissolved H2 concentrations in microbial electrochemical reactors

Author:

Sandfeld Tobias,Grøn Louise Vinther,Munoz Laura,Meyer Rikke Louise,Koren Klaus,Philips JoORCID

Abstract

Measuring the distribution and dynamics of H2 in microbial electrochemical reactors is valuable to gain insights into the processes behind novel bioelectrochemical technologies, such as microbial electrosynthesis. Here, a microsensor method to measure and profile dissolved H2 concentrations in standard H-cell reactors is described. Graphite cathodes were oriented horizontally to enable the use of a motorized microprofiling system and a stereomicroscope was used to place the H2 microsensor precisely on the cathode surface. Profiling was performed towards the gas-liquid interface, while preserving the electric connections and flushing the headspace (to maintain anoxic conditions) and under strict temperature control (to overcome the temperature sensitivity of the microsensors). This method was tested by profiling six reactors, with and without inoculation of the acetogen Sporomusa ovata, at three different time points. H2 accumulated over time in the abiotic controls, while S. ovata maintained low H2 concentrations throughout the liquid phase (< 4 μM) during the whole experimental period. These results demonstrate that this setup generated insightful H2 profiles. However, various limitations of this microsensor method were identified, as headspace flushing lowered the dissolved H2 concentrations over time. Moreover, microsensors can likely not accurately measure H2 in the immediate vicinity of the solid cathode, because the solids cathode surface obstructs H2 diffusion into the microsensor. Finally, the reactors had to be discarded after microsensor profiling. Interested users should bear these considerations in mind when applying microsensors to characterize microbial electrochemical reactors.

Funder

Novo Nordisk Fonden

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3