A robust intrusion detection system based on a shallow learning model and feature extraction techniques

Author:

E. L. Asry Chadia,Benchaji Ibtissam,Douzi SamiraORCID,E. L. Ouahidi Bouabid

Abstract

The escalating prevalence of cybersecurity risks calls for a focused strategy in order to attain efficient resolutions. This study introduces a detection model that employs a tailored methodology integrating feature selection using SHAP values, a shallow learning algorithm called PV-DM, and machine learning classifiers like XGBOOST. The efficacy of our suggested methodology is highlighted by employing the NSL-KDD and UNSW-NB15 datasets. Our approach in the NSL-KDD dataset exhibits exceptional performance, with an accuracy of 98.92%, precision of 98.92%, recall of 95.44%, and an F1-score of 96.77%. Notably, this performance is achieved by utilizing only four characteristics, indicating the efficiency of our approach. The proposed methodology achieves an accuracy of 82.86%, precision of 84.07%, recall of 77.70%, and an F1-score of 80.20% in the UNSW-NB15 dataset, using only six features. Our research findings provide substantial evidence of the enhanced performance of the proposed model compared to a traditional deep-learning model across all performance metrics.

Publisher

Public Library of Science (PLoS)

Reference56 articles.

1. The architecture of a network level intrusion detection system;R Heady;arXiv preprint arXiv:1409.0473,1990

2. Shallow and Deep Learning Approaches for Network Intrusion Alert Prediction, Procedia Computer Science;Ansari Mohammad Samar,2020

3. Classification and Importance of Intrusion Detection System;K. Rajasekaran;International Journal of Computer Science and Information Security,2020

4. Survey on Intrusion Detection System Types;Suad Othman;International Journal of Cyber-Security and Digital Forensics,2018

5. A survey of intrusion detection techniques;F Lunt Teresa;Computers and Security,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3