CTIVA: Censored time interval variable analysis

Author:

Kim InsooORCID,Seok Junhee,Kim YoojoongORCID

Abstract

Traditionally, datasets with multiple censored time-to-events have not been utilized in multivariate analysis because of their high level of complexity. In this paper, we propose the Censored Time Interval Analysis (CTIVA) method to address this issue. It estimates the joint probability distribution of actual event times in the censored dataset by implementing a statistical probability density estimation technique on the dataset. Based on the acquired event time, CTIVA investigates variables correlated with the interval time of events via statistical tests. The proposed method handles both categorical and continuous variables simultaneously—thus, it is suitable for application on real-world censored time-to-event datasets, which include both categorical and continuous variables. CTIVA outperforms traditional censored time-to-event data handling methods by 5% on simulation data. The average area under the curve (AUC) of the proposed method on the simulation dataset exceeds 0.9 under various conditions. Further, CTIVA yields novel results on National Sample Cohort Demo (NSCD) and proteasome inhibitor bortezomib dataset, a real-world censored time-to-event dataset of medical history of beneficiaries provided by the National Health Insurance Sharing Service (NHISS) and National Center for Biotechnology Information (NCBI). We believe that the development of CTIVA is a milestone in the investigation of variables correlated with interval time of events in presence of censoring.

Funder

National Research Foundation of Korea

The Catholic University of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. The cox model.;TM Therneau;Modeling survival data: extending the Cox model: Springer,2000

2. Machine learning for survival analysis: A survey;P Wang;ACM Computing Surveys,2019

3. Censoring issues in survival analysis.;K-M Leung;Annual review of public health.,1997

4. Discrete-time survival analysis in the critically ill: a deep learning approach using heterogeneous data.;H-C Thorsen-Meyer;NPJ digital medicine.,2022

5. Deep learning-based survival analysis for high-dimensional survival data.;L Hao;Mathematics.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3