Enhanced multimodal biometric recognition systems based on deep learning and traditional methods in smart environments

Author:

A. El_Rahman Sahar,Alluhaidan Ala SalehORCID

Abstract

In the field of data security, biometric security is a significant emerging concern. The multimodal biometrics system with enhanced accuracy and detection rate for smart environments is still a significant challenge. The fusion of an electrocardiogram (ECG) signal with a fingerprint is an effective multimodal recognition system. In this work, unimodal and multimodal biometric systems using Convolutional Neural Network (CNN) are conducted and compared with traditional methods using different levels of fusion of fingerprint and ECG signal. This study is concerned with the evaluation of the effectiveness of proposed parallel and sequential multimodal biometric systems with various feature extraction and classification methods. Additionally, the performance of unimodal biometrics of ECG and fingerprint utilizing deep learning and traditional classification technique is examined. The suggested biometric systems were evaluated utilizing ECG (MIT-BIH) and fingerprint (FVC2004) databases. Additional tests are conducted to examine the suggested models with:1) virtual dataset without augmentation (ODB) and 2) virtual dataset with augmentation (VDB). The findings show that the optimum performance of the parallel multimodal achieved 0.96 Area Under the ROC Curve (AUC) and sequential multimodal achieved 0.99 AUC, in comparison to unimodal biometrics which achieved 0.87 and 0.99 AUCs, for the fingerprint and ECG biometrics, respectively. The overall performance of the proposed multimodal biometrics outperformed unimodal biometrics using CNN. Moreover, the performance of the suggested CNN model for ECG signal and sequential multimodal system based on neural network outperformed other systems. Lastly, the performance of the proposed systems is compared with previously existing works.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

Public Library of Science (PLoS)

Reference60 articles.

1. Enhanced multimodal biometric recognition approach for smart cities based on an optimized fuzzy genetic algorithm.;V Rajasekar;Sci Rep.,2022

2. Spotted Hyena Optimizer: A Novel Bio-inspired based Metaheuristic Technique for Engineering Applications.;G Dhiman;Advances in Engineering Software.,2017

3. Robust Deep Identification using ECG and Multimodal Biometrics for Industrial Internet of Things.;EA Alkeem;Ad Hoc Netw [Internet].,2021

4. A fingerprint recognition framework using Artificial Neural Network.;R Oulhiq;In: 2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA).,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3