Frequentist model averaging for analysis of dose–response in epidemiologic studies with complex exposure uncertainty

Author:

Kwon DeukwooORCID,Simon Steven L.,Hoffman F. Owen,Pfeiffer Ruth M.

Abstract

In epidemiologic studies, association estimates of an exposure with disease outcomes are often biased when the uncertainties of exposure are ignored. Consequently, corresponding confidence intervals (CIs) will not have correct coverage. This issue is particularly problematic when exposures must be reconstructed from physical measurements, for example, for environmental or occupational radiation doses that were received by a study population for which radiation doses cannot be measured directly. To incorporate complex uncertainties in reconstructed exposures, the two-dimensional Monte Carlo (2DMC) dose estimation method has been proposed and used in various dose reconstruction efforts. The 2DMC method generates multiple exposure realizations from dosimetry models that incorporate various sources of errors to reflect the uncertainty of the dose distribution as well as the uncertainties in individual doses in the exposed population. Traditional measurement-error model approaches, typically based on using mean doses in the dose-exposure analysis, do not fully account exposure uncertainties. A recently developed statistical approach that overcomes many of these limitations by analyzing multiple exposure realizations in relation to disease risk is Bayesian model averaging (BMA). The analytic advantage of the BMA is its ability to better accommodate complex exposure uncertainty in the risk estimation, but a practical. Drawback is its significant computational complexity. In this present paper, we propose a novel frequentist model averaging (FMA) approach which has all the analytical advantages of the BMA method but is much simpler to implement and computationally faster. We show in simulations that, like BMA, FMA yields 95% confidence intervals for association parameters that close to 95% coverage rate. In simulations, the FMA has shorter length of CIs than those of another frequentist approach, the corrected information matrix (CIM) method. We illustrate the similarities in performance of BMA and FMA from a study of exposures from radioactive fallout in Kazakhstan.

Funder

National Center for Advancing Translational Sciences

Intramural Research Program of the National Cancer Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3