Adapting genetic algorithms for artificial evolution of visual patterns under selection from wild predators

Author:

Briolat Emmanuelle S.ORCID,Hancock George R. A.,Troscianko Jolyon

Abstract

Camouflage is a widespread and well-studied anti-predator strategy, yet identifying which patterns provide optimal protection in any given scenario remains challenging. Besides the virtually limitless combinations of colours and patterns available to prey, selection for camouflage strategies will depend on complex interactions between prey appearance, background properties and predator traits, across repeated encounters between co-evolving predators and prey. Experiments in artificial evolution, pairing psychophysics detection tasks with genetic algorithms, offer a promising way to tackle this complexity, but sophisticated genetic algorithms have so far been restricted to screen-based experiments. Here, we present methods to test the evolution of colour patterns on physical prey items, under selection from wild predators in the field. Our techniques expand on a recently-developed open-access pattern generation and genetic algorithm framework, modified to operate alongside artificial predation experiments. In this system, predators freely interact with prey, and the order of attack determines the survival and reproduction of prey patterns into future generations. We demonstrate the feasibility of these methods with a case study, in which free-flying birds feed on artificial prey deployed in semi-natural conditions, against backgrounds differing in three-dimensional complexity. Wild predators reliably participated in this experiment, foraging for 11 to 16 generations of artificial prey and encountering a total of 1,296 evolved prey items. Changes in prey pattern across generations indicated improvements in several metrics of similarity to the background, and greater edge disruption, although effect sizes were relatively small. Computer-based replicates of these trials, with human volunteers, highlighted the importance of starting population parameters for subsequent evolution, a key consideration when applying these methods. Ultimately, these methods provide pathways for integrating complex genetic algorithms into more naturalistic predation trials. Customisable open-access tools should facilitate application of these tools to investigate a wide range of visual pattern types in more ecologically-relevant contexts.

Funder

Natural Environment Research Council

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3