Global domain adaptation attention with data-dependent regulator for scene segmentation

Author:

Lei QiuyuanORCID,Lu Fei

Abstract

Most semantic segmentation works have obtained accurate segmentation results through exploring the contextual dependencies. However, there are several major limitations that need further investigation. For example, most approaches rarely distinguish different types of contextual dependencies, which may pollute the scene understanding. Moreover, local convolutions are commonly used in deep learning models to learn attention and capture local patterns in the data. These convolutions operate on a small neighborhood of the input, focusing on nearby information and disregarding global structural patterns. To address these concerns, we propose a Global Domain Adaptation Attention with Data-Dependent Regulator (GDAAR) method to explore the contextual dependencies. Specifically, to effectively capture both the global distribution information and local appearance details, we suggest using a stacked relation approach. This involves incorporating the feature node itself and its pairwise affinities with all other feature nodes within the network, arranged in raster scan order. By doing so, we can learn a global domain adaptation attention mechanism. Meanwhile, to improve the features similarity belonging to the same segment region while keeping the discriminative power of features belonging to different segments, we design a data-dependent regulator to adjust the global domain adaptation attention on the feature map during inference. Extensive ablation studies demonstrate that our GDAAR better captures the global distribution information for the contextual dependencies and achieves the state-of-the-art performance on several popular benchmarks.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3