Robust circuitry-based scores of structural importance of human brain areas

Author:

Hegedűs Dániel,Grolmusz VinceORCID

Abstract

We consider the 1015-vertex human consensus connectome computed from the diffusion MRI data of 1064 subjects. We define seven different orders on these 1015 graph vertices, where the orders depend on parameters derived from the brain circuitry, that is, from the properties of the edges (or connections) incident to the vertices ordered. We order the vertices according to their degree, the sum, the maximum, and the average of the fiber counts on the incident edges, and the sum, the maximum and the average length of the fibers in the incident edges. We analyze the similarities of these seven orders by the Spearman correlation coefficient and by their inversion numbers and have found that all of these seven orders have great similarities. In other words, if we interpret the orders as scoring of the importance of the vertices in the consensus connectome, then the scores of the vertices will be similar in all seven orderings. That is, important vertices of the human connectome typically have many neighbors connected with long and thick axonal fibers (where thickness is measured by fiber numbers), and their incident edges have high maximum and average values of length and fiber-number parameters, too. Therefore, these parameters may yield robust ways of deciding which vertices are more important in the anatomy of our brain circuitry than the others.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3