Abstract
Background
The fast-changing labor market highlights the need for an in-depth understanding of occupational mobility impacted by technological change. However, we lack a multidimensional classification scheme that considers similarities of occupations comprehensively, which prevents us from predicting employment trends and mobility across occupations. This study fills the gap by examining employment trends based on similarities between occupations.
Method
We first demonstrated a new method that clusters 756 occupation titles based on knowledge, skills, abilities, education, experience, training, activities, values, and interests. We used the Principal Component Analysis to categorize occupations in the Standard Occupational Classification, which is grouped into a four-level hierarchy. Then, we paired the occupation clusters with the occupational employment projections provided by the U.S. Bureau of Labor Statistics. We analyzed how employment would change and what factors affect the employment changes within occupation groups. Particularly, we specified factors related to technological changes.
Results
The results reveal that technological change accounts for significant job losses in some clusters. This poses occupational mobility challenges for workers in these jobs at present. Job losses for nearly 60% of current employment will occur in low-skill, low-wage occupational groups. Meanwhile, many mid-skilled and highly skilled jobs are projected to grow in the next ten years.
Conclusion
Our results demonstrate the utility of our occupational classification scheme. Furthermore, it suggests a critical need for skills upgrading and workforce development for workers in declining jobs. Special attention should be paid to vulnerable workers, such as older individuals and minorities.
Funder
National Science Foundation
Publisher
Public Library of Science (PLoS)
Reference98 articles.
1. Skill-biased technological change and rising wage inequality: Some problems and puzzles;D Card;Journal of labor economics,2002
2. Lousy and Lovely Jobs: The Rising Polarization of Work in Britain;M Goos;The Review of Economics and Statistics,2007
3. Digitalization, routineness and employment: An exploration on Italian task-based data;V Cirillo;Research Policy,2021
4. Changes in relative wages, 1963–1987: supply and demand factors;LF Katz;The quarterly journal of economics,1992
5. Susskind D. A world without work: Technology, automation and how we should respond. Penguin UK; 2020. https://fred.stlouisfed.org/series/PAYEMS.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献