Pumping machine fault diagnosis based on fused RDC-RBF

Author:

Li Bowen,Raja S. SelvakumarORCID,Li Jiajun,Yao Zejun,Song Wenguang,Li Haoyuan

Abstract

At present, the fault diagnosis of pumping units in major oil fields in China is time-consuming and inefficient, and there is no universal problem for high requirements of hardware resources. In this study, a fault fusion diagnosis method of pumping unit based on improved Fourier descriptor (IDF) and rapid density clustering RBF (RDC-RBF) neural network is proposed. Firstly, the minimum inertia axis of the center of gravity of the indicator diagram is obtained. The farthest point of the intersection of the inertial axis and the contour is determined as the starting point. Then Fourier transform is performed on the contour boundary of the graph to obtain the feature vector. Then, combining with the idea of fast density clustering algorithm, the number of hidden layer neurons of RBF is determined by finding the point with the highest density and using it as the hidden layer neuron. At the same time, the characteristics of Gaussian function are introduced to ensure the activity of hidden layer neurons. Finally, through dynamic adaptive cuckoo search (DACS), the step size is automatically adjusted according to the convergence speed of the objective function of RBF, and the efficiency and accuracy of RBF in different search stages are balanced. The optimal parameters such as the width and weight of RBF are determined, and the optimal RDC-RBF fault diagnosis model is established. The model is applied to the diagnosis of different fault types of pumping units, and compared with the current mainstream models. The average detection accuracy of the fusion RDC-RBF fault diagnosis method proposed in this paper reaches 96.3%. The measured results have high accuracy and short time. At the same time, this method is currently applied to oil production sites such as Shengli Oilfield in China, which greatly reduces the human resources required for fault diagnosis of pumping units in the past.

Funder

Chinese Major national science and technology projects: Research on dynamic monitoring method and diagnostic technology for high temperature and high pressure oil and gas reservoir development

China University Industry University Research Innovation Fund: Alibaba cloud based digital core graphic virtual simulation teaching system

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3