Comparing the performance of statistical, machine learning, and deep learning algorithms to predict time-to-event: A simulation study for conversion to mild cognitive impairment

Author:

Billichová Martina,Coan Lauren Joyce,Czanner Silvester,Kováčová Monika,Sharifian Fariba,Czanner GabrielaORCID

Abstract

Mild Cognitive Impairment (MCI) is a condition characterized by a decline in cognitive abilities, specifically in memory, language, and attention, that is beyond what is expected due to normal aging. Detection of MCI is crucial for providing appropriate interventions and slowing down the progression of dementia. There are several automated predictive algorithms for prediction using time-to-event data, but it is not clear which is best to predict the time to conversion to MCI. There is also confusion if algorithms with fewer training weights are less accurate. We compared three algorithms, from smaller to large numbers of training weights: a statistical predictive model (Cox proportional hazards model, CoxPH), a machine learning model (Random Survival Forest, RSF), and a deep learning model (DeepSurv). To compare the algorithms under different scenarios, we created a simulated dataset based on the Alzheimer NACC dataset. We found that the CoxPH model was among the best-performing models, in all simulated scenarios. In a larger sample size (n = 6,000), the deep learning algorithm (DeepSurv) exhibited comparable accuracy (73.1%) to the CoxPH model (73%). In the past, ignoring heterogeneity in the CoxPH model led to the conclusion that deep learning methods are superior. We found that when using the CoxPH model with heterogeneity, its accuracy is comparable to that of DeepSurv and RSF. Furthermore, when unobserved heterogeneity is present, such as missing features in the training, all three models showed a similar drop in accuracy. This simulation study suggests that in some applications an algorithm with a smaller number of training weights is not disadvantaged in terms of accuracy. Since algorithms with fewer weights are inherently easier to explain, this study can help artificial intelligence research develop a principled approach to comparing statistical, machine learning, and deep learning algorithms for time-to-event predictions.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference32 articles.

1. M/EEG-Based Bio-Markers to Predict the MCI and Alzheimer’s Disease: A Review from the ML Perspective;S Yang;IEEE Transactions on Biomedical Engineering,2019

2. What Matters to Patients with Alzheimer’s Disease and Their Care Partners? Implications for Understanding the Value of Future Interventions;F Jessen;Journal of Prevention of Alzheimer’s Disease,2022

3. Introduction to the Analysis of Survival Data in the Presence of Competing Risks;PC Austin;Circulation,2016

4. Big Data Analytical Approaches to the NACC Dataset: Aiding Preclinical Trial Enrichment;M Lin;Alzheimer Disease and Associated Disorders,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3