Numerical assessment of the applicability of geometry-based force inference on homogeneous and heterogeneous cells

Author:

Miyasaka ShouORCID,Izumi Keita,Okuda SatoruORCID,Miki Yuichiro

Abstract

The measurement of cellular forces, which reflect crucial biological attributes, has the potential to replace conventional cell assessment methods, such as morphology, proliferation, and molecular expression analysis, in medical cell diagnosis and cell culture studies. In medical cell evaluations, force inference techniques have gained prominence due to their non-invasiveness and lack of requirement for specialized equipment. Among those techniques, the method proposed by Ishihara et al., which estimates forces in densely packed cells based only on cell geometry, is a promising method. However, its applicability range of this method has not been fully established. In this study, we employed a two-dimensional vertex model to numerically assess the applicability of this method on homogeneous and heterogeneous cells. Our comparisons between the true values from numerical simulations and the estimated values from the inference method revealed a significant correlation between estimation accuracy and cell roundness in systems of homogeneous cell. Moreover, the method demonstrated efficient force estimations in heterogeneous-cell systems. These findings may be useful when the force inference method is employed to evaluate medical cells.

Publisher

Public Library of Science (PLoS)

Reference19 articles.

1. Cellular senescence in cancer: from mechanisms to detection;HL Ou;Mol Oncol,2021

2. Immunohistochemical detection of senescence markers in human sarcomas;A Giatromanolaki;Pathol Res Pract,2020

3. Mechanical Fingerprint of Senescence in Endothelial Cells;C Nafsika;Nano Letters,2021

4. Tuning mitochondrial structure and function to criticality by fluctuation-driven mechanotransduction;E B Suki;Scientific Reports,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3