Abstract
There is growing interest in identifying valid and reliable methods for detecting early mobility limitations in aging populations. A multi-sensor approach that combines accelerometry with Global Positioning System (GPS) devices could provide valuable insights into late-life mobility decline; however, this innovative approach requires more investigation. We conducted a series of two experiments with 25 older participants (66.2±8.5 years) to determine the validity of a GPS enabled smartwatch (TicWatch S2 and Pro 3 Ultra GPS) and separate accelerometer (ActiGraph wGT3X-BT) to collect movement, navigation and body posture data relevant to mobility. In experiment 1, participants wore the TicWatchS2 and ActiGraph simultaneously on the wrist for 3 days. In experiment 2, participants wore the TicWatch Pro 2 Ultra GPS on the wrist and ActiGraph on the thigh for 3 days. In both experiments participants also carried a Qstarz data logger for trips outside the home. The TicWatch Pro 3 Ultra GPS performed better than the S2 model and was similar to the Qstarz in all tested trip-related measures, and it was able to estimate both passive and active trip modes. Both models showed similar results to the gold standard Qstarz in life-space-related measures. The TicWatch S2 demonstrated good to excellent overall agreement with the ActiGraph algorithms for the time spent in sedentary and non-sedentary activities, with 84% and 87% agreement rates, respectively. Under controlled conditions, the TicWatch Pro 3 Ultra GPS consistently measured step count in line with the participants’ self-reported data, with a bias of 0.4 steps. The thigh-worn ActiGraph algorithm accurately classified sitting and lying postures (97%) and standing postures (90%). Our multi-sensor approach to monitoring mobility has the potential to capture both accelerometer-derived movement data and trip/life-space data only available through GPS. In this study, we found that the TicWatch models were valid devices for capturing GPS and raw accelerometer data, making them useful tools for assessing real-life mobility in older adults.
Funder
AGE-WELL
McMaster Institute for Research on Aging, McMaster University
Publisher
Public Library of Science (PLoS)