Trait variation in patchy landscapes: Morphology of spotted salamanders (Ambystoma maculatum) varies more within ponds than between ponds

Author:

Green Elizabeth T.,Dell Anthony I.,Crawford John A.,Biro Elizabeth G.,Daversa David R.ORCID

Abstract

The influence of intraspecific trait variation on species interactions makes trait-based approaches critical to understanding eco-evolutionary processes. Because species occupy habitats that are patchily distributed in space, species interactions are influenced not just by the degree of intraspecific trait variation but also the relative proportion of trait variation that occurs within- versus between-patches. Advancement in trait-based ecology hinges on understanding how trait variation is distributed within and between habitat patches across the landscape. We sampled larval spotted salamanders (Ambystoma maculatum) across six spatially discrete ponds to quantify within- and between-pond variation in mass, length, and various metrics associated with their relationship (scaling, body condition, shape). Across all traits, within-pond variation contributed more to total observed morphological variation than between-pond variation. Between-pond variation was not negligible, however, and explained 20–41% of total observed variation in measured traits. Between-pond variation was more pronounced in salamander tail morphology compared to head or body morphology, suggesting that pond-level factors more strongly influence tails than other body parts. We also observed differences in mass-length relationships across ponds, both in terms of scaling slopes and intercepts, though differences in the intercepts were much stronger. Preliminary evidence hinted that newly constructed ponds were a driver of the observed differences in mass-length relationships and morphometrics. General pond-level difference in salamander trait covariation suggest that allometric scaling of morphological traits is context dependent in patchy landscapes. Effects of pond age offer the hypothesis that habitat restoration through pond construction is a driver of variation in trait scaling, which managers may leverage to bolster trait diversity.

Funder

National Great Rivers Research and Education Center

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3