Quantifying confidence shifts in a BERT-based question answering system evaluated on perturbed instances

Author:

Shen Ke,Kejriwal MayankORCID

Abstract

Recent work on transformer-based neural networks has led to impressive advances on multiple-choice natural language processing (NLP) problems, such as Question Answering (QA) and abductive reasoning. Despite these advances, there is limited work still on systematically evaluating such models in ambiguous situations where (for example) no correct answer exists for a given prompt among the provided set of choices. Such ambiguous situations are not infrequent in real world applications. We design and conduct an experimental study of this phenomenon using three probes that aim to ‘confuse’ the model by perturbing QA instances in a consistent and well-defined manner. Using a detailed set of results based on an established transformer-based multiple-choice QA system on two established benchmark datasets, we show that the model’s confidence in its results is very different from that of an expected model that is ‘agnostic’ to all choices that are incorrect. Our results suggest that high performance on idealized QA instances should not be used to infer or extrapolate similarly high performance on more ambiguous instances. Auxiliary results suggest that the model may not be able to distinguish between these two situations with sufficient certainty. Stronger testing protocols and benchmarking may hence be necessary before such models are deployed in front-facing systems or ambiguous decision making with significant human impact.

Funder

Defense Sciences Office, DARPA

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference66 articles.

1. Natural language question answering: the view from here;L Hirschman;natural language engineering,2001

2. Siblini W, Pasqual C, Lavielle A, Cauchois C. Multilingual question answering from formatted text applied to conversational agents. arXiv preprint arXiv:191004659. 2019;.

3. Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:181004805. 2018;.

4. GPT-3: Its nature, scope, limits, and consequences;L Floridi;Minds and Machines,2020

5. Lee JS, Hsiang J. Patentbert: Patent classification with fine-tuning a pre-trained bert model. arXiv preprint arXiv:190602124. 2019;.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3