Quantifying time spent outdoors: A versatile method using any type of global positioning system (GPS) and accelerometer devices

Author:

Liu WeiORCID,Chambers Timothy,Clevenger Kimberly A.,Pfeiffer Karin A.,Rzotkiewicz Zachary,Park HyunseoORCID,Pearson Amber L.ORCID

Abstract

Spending time outdoors is associated with increased time spent in physical activity, lower chronic disease risk, and wellbeing. Many studies rely on self-reported measures, which are prone to recall bias. Other methods rely on features and functions only available in some GPS devices. Thus, a reliable and versatile method to objectively quantify time spent outdoors is needed. This study sought to develop a versatile method to classify indoor and outdoor (I/O) GPS data that can be widely applied using most types of GPS and accelerometer devices. To develop and test the method, five university students wore an accelerometer (ActiGraph wGT3X-BT) and a GPS device (Canmore GT-730FL-S) on an elastic belt at the right hip for two hours in June 2022 and logged their activity mode, setting, and start time via activity diaries. GPS trackers were set to collect data every 5 seconds. A rule-based point cluster-based method was developed to identify indoor, outdoor, and in-vehicle time. Point clusters were detected using an application called GPSAS_Destinations and classification were done in R using accelerometer lux, building footprint, and park location data. Classification results were compared with the submitted activity diaries for validation. A total of 7,006 points for all participants were used for I/O classification analyses. The overall I/O GPS classification accuracy rate was 89.58% (Kappa = 0.78), indicating good classification accuracy. This method provides reliable I/O clarification results and can be widely applied using most types of GPS and accelerometer devices.

Funder

National Cancer Institute

Detroit Medical Center

Michigan State University’s Clinical Translational Science Initiative

Michigan State University’s Vice President for Research and Graduate Studies

Michigan State University’s Provost Undergraduate Research Initiative

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3