Creating synthetic populations in transplantation: A Bayesian approach enabling simulation without registry re-sampling

Author:

Gunsalus Paul R.,Rose JohnieORCID,Lehr Carli J.ORCID,Valapour Maryam,Dalton Jarrod E.

Abstract

Computer simulation has played a pivotal role in analyzing alternative organ allocation strategies in transplantation. The current approach to producing cohorts of organ donors and candidates for individual-level simulation requires directly re-sampling retrospective data from a transplant registry. This historical data may reflect outmoded policies and practices as well as systemic inequities in candidate listing, limiting contemporary applicability of simulation results. We describe the development of an alternative approach for generating synthetic donors and candidates using hierarchical Bayesian network probability models. We developed two Bayesian networks to model dependencies among 10 donor and 36 candidate characteristics relevant to waitlist survival, donor-candidate matching, and post-transplant survival. We estimated parameters for each model using Scientific Registry of Transplant Recipients (SRTR) data. For 100 donor and 100 candidate synthetic populations generated, proportions for each categorical donor or candidate attribute, respectively, fell within one percentage point of observed values; the interquartile ranges (IQRs) of each continuous variable contained the corresponding SRTR observed median. Comparisons of synthetic to observed stratified distributions demonstrated the ability of the method to capture complex joint variability among multiple characteristics. We also demonstrated how changing two upstream population parameters can exert cascading effects on multiple relevant clinical variables in a synthetic population. Generating synthetic donor and candidate populations in transplant simulation may help overcome critical limitations related to the re-sampling of historical data, allowing developers and decision makers to customize the parameters of these populations to reflect realistic or hypothetical future states.

Funder

National Heart, Lung, and Blood Institute

Heart, Lung, and Blood Institute

Publisher

Public Library of Science (PLoS)

Reference38 articles.

1. Expected effect of the lung Composite Allocation Score system on US lung transplantation;M Valapour;Am J Transplant,2022

2. New Kidney and Pancreas Allocation Policy: Moving to a Circle as the First Unit of Allocation;A Israni;J Am Soc Nephrol,2021

3. Implementing a Height-Based Rule for the Allocation of Pediatric Donor Livers to Adults: A Liver Simulated Allocation Model Study.;J Ge;Liver Transpl,2021

4. Broadened Allocation of Pancreas Transplants Across Compatible ABO Blood Types;JA Fridell;Transplant Proc,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A modular simulation framework for organ allocation;The Journal of Heart and Lung Transplantation;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3