Selective image segmentation driven by region, edge and saliency functions

Author:

Soomro Shafiullah,Niaz Asim,Soomro Toufique AhmedORCID,Kim Jin,Manzoor Adnan,Choi Kwang NamORCID

Abstract

Present active contour methods often struggle with the segmentation of regions displaying variations in texture, color, or intensity a phenomenon referred to as inhomogeneities. These limitation impairs their ability to precisely distinguish and outline diverse components within an image. Further some of these methods employ intricate mathematical formulations for energy minimization. Such complexity introduces computational sluggishness, making these methods unsuitable for tasks requiring real-time processing or rapid segmentation. Moreover, these methods are susceptible to being trapped in energy configurations corresponding to local minimum points. Consequently, the segmentation process fails to converge to the desired outcome. Additionally, the efficacy of these methods diminishes when confronted with regions exhibiting weak or subtle boundaries. To address these limitations comprehensively, our proposed approach introduces a fresh paradigm for image segmentation through the synchronization of region-based, edge-based, and saliency-based segmentation techniques. Initially, we adapt an intensity edge term based on the zero crossing feature detector (ZCD), which is used to highlight significant edges of an image. Secondly, a saliency function is formulated to detect salient regions from an image. We have also included a globally tuned region based SPF (signed pressure force) term to move contour away and capture homogeneous regions. ZCD, saliency and global SPF are jointly incorporated with some scaled value for the level set evolution to develop an effective image segmentation model. In addition, proposed method is capable to perform selective object segmentation, which enables us to choose any single or multiple objects inside an image. Saliency function and ZCD detector are considered feature enhancement tools, which are used to get important features of an image, so this method has a solid capacity to segment nature images (homogeneous or inhomogeneous) precisely. Finally, the adaption of the Gaussian kernel removes the need of any penalization term for level set reinitialization. Experimental results will exhibit the efficiency of the proposed method.

Funder

Institute for Information and Communications Technology Promotion

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3