Human-induced land use changes and phosphorus limitation affect soil microbial biomass and ecosystem stoichiometry

Author:

Awoonor Johnny KofiORCID,Dogbey Bright FafaliORCID,Salis Ibrahim

Abstract

Soil and microbial biomass carbon (C), nitrogen (N), and phosphorus (P) play an important role in soil nutrient dynamics in biogeochemical cycles of terrestrial ecosystems. However, increased human activities as a result of agricultural intensification on soil nutrients and microbial C:N:P stoichiometry are poorly understood in this fragile forest-savanna transition agroecosystem. This study aimed to (i) assess soil and microbial C, N, and P stoichiometry in different land use systems, and (ii) examine the effect of soil and microbial C, N, and P stoichiometry on soils susceptible to human-induced land use changes. A total of 82 composite soil samples at a depth of 0–20 cm were sampled from forest, savanna, grassland, fallow and cropland for laboratory analysis. The results revealed that the concentrations of C, N, and P were low in Fallow and Cropland compared to other land use systems. Analysis of variance in microbial C, N, and P stoichiometric ratios revealed a significant decreasing tendency compared to soil C:N, C:P and N:P ratios with no statistical significance (p < 0.05). The C:P and N:P ratios were low compared to the C:N ratio in land uses. A significant positive correlation was observed between MBC and MBN (0.95; p < 0.01), and with C and N (0.69; p < 0.01). There were significant interactive effects of land use on soil and microbial variables. The estimated microbial C:N:P stoichiometric ratios (21:2:1) were well constrained in the study area. The transition from Forest to Cropland resulted in 64%, 52%, and 71% reduction in C, N, and P, respectively. This implies that phosphorus is the main factor limiting productivity. The low availability of phosphorus in these tropical soils may have resulted in low C:P and N:P ratios. Therefore, we conclude that our results highlight the importance of phosphorus limitation on ratios of microbial C:P and N:P in landuse systems. Nutrient inputs such as fertilizers, manure and crop residues should be applied to croplands to improve soil and microbial C, N and P levels. Further, effects of land use on soil nutrient status and stoichiometry at 1-meter depth will be considered in our future work.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3