Selenium inhibits ferroptosis in hyperglycemic cerebral ischemia/reperfusion injury by stimulating the Hippo pathway

Author:

Li LuORCID,Wang Meng,Ma Yan-Mei,Yang Lan,Zhang Deng-Hai,Guo Feng-Ying,Jing Li,Zhang Jian-Zhong

Abstract

Hyperglycemia can exacerbate cerebral ischemia/reperfusion (I/R) injury, and the mechanism involves oxidative stress, apoptosis, autophagy and mitochondrial function. Our previous research showed that selenium (Se) could alleviate this injury. The aim of this study was to examine how selenium alleviates hyperglycemia-mediated exacerbation of cerebral I/R injury by regulating ferroptosis. Middle cerebral artery occlusion (MCAO) and reperfusion models were established in rats under hyperglycemic conditions. An in vitro model of hyperglycemic cerebral I/R injury was created with oxygen-glucose deprivation and reoxygenation (OGD/R) and high glucose was employed. The results showed that hyperglycemia exacerbated cerebral I/R injury, and sodium selenite pretreatment decreased infarct volume, edema and neuronal damage in the cortical penumbra. Moreover, sodium selenite pretreatment increased the survival rate of HT22 cells under OGD/R and high glucose conditions. Pretreatment with sodium selenite reduced the hyperglycemia mediated enhancement of ferroptosis. Furthermore, we observed that pretreatment with sodium selenite increased YAP and TAZ levels in the cytoplasm while decreasing YAP and TAZ levels in the nucleus. The Hippo pathway inhibitor XMU-MP-1 eliminated the inhibitory effect of sodium selenite on ferroptosis. The findings suggest that pretreatment with sodium selenite can regulate ferroptosis by activating the Hippo pathway, and minimize hyperglycemia-mediated exacerbation of cerebral I/R injury.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Ningxia

Natural Science Foundation of Ningxia

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3