Systematic cryopreservation study of cardiac myoblasts in suspension

Author:

Ashrafi Elham,Radisic Milica,Elliott Janet A. W.ORCID

Abstract

H9c2 myoblasts are a cell line derived from embryonic rat heart tissue and demonstrate the ability to differentiate to cardiac myotubes upon reduction of the serum concentration (from 10% to 1%) and addition of all-trans retinoic acid in the growth medium. H9c2 cells are increasingly being used as an easy-to-culture proxy for some functions of cardiomyocytes. The cryobiology of cardiac cells including H9c2 myoblasts has not been studied as extensively as that of some cell types. Consequently, it is important to characterize the cryobiological response and systematically develop well-optimized cryopreservation protocols for H9c2 cells to have optimal and consistent viability and functionality after thaw for high quality studies with this cell type. In this work, an interrupted slow cooling protocol (graded freezing) was applied to characterize H9c2 response throughout the cooling profile. Important factors that affect the cell response were examined, and final protocols that provided the highest post-thaw viability are reported. One protocol uses the common cryoprotectant dimethyl sulfoxide combined with hydroxyethyl starch, which will be suitable for applications in which the presence of dimethyl sulfoxide is not an issue; and the other protocol uses glycerol as a substitute when there is a desire to avoid dimethyl sulfoxide. Both protocols achieved comparable post-thaw viabilities (higher than 80%) based on SYTO 13/GelRed flow cytometry results. H9c2 cells cryopreserved by either protocol showed ability to differentiate to cardiac myotubes comparable to fresh (unfrozen) H9c2 cells, and their differentiation to cardiac myotubes was confirmed with i) change in cell morphology, ii) expression of cardiac marker troponin I, and iii) increase in mitochondrial mass.

Funder

Canadian Institutes of Health Research

Canada Research Chairs

Publisher

Public Library of Science (PLoS)

Reference115 articles.

1. Statista Research Department. Death in Canada—Statistics & Facts [Internet]. 2022. Available from: https://www.statista.com/topics/8039/death-in-canada/#dossierKeyfigures Accessed on 2023-04-18.

2. Mortality in the United States, 2020;SL Murphy;CDC (Centers for Disease control and Prevention),2021

3. A review of the cost of cardiovascular disease;JE Tarride;Can. J. Cardiol,2009

4. The role of cell membranes in the freezing of yeast and other single cells;P. Mazur;Ann. N. Y. Acad. Sci,1965

5. Cryobiology: The Freezing of Biological Systems: The responses of living cells to ice formation are of theoretical interest and practical concern;P. Mazur;Science,1970

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3