Inferring personal intake recommendations of phosphorous and potassium for end-stage renal failure patients by simulating with Bayesian hierarchical multivariate model

Author:

Turkia JariORCID,Schwab Ursula,Hautamäki Ville

Abstract

Most end-stage renal disease (ESRD) patients face a risk of malnutrition, partly due to dietary restrictions on phosphorous and, in some cases, potassium intake. These restrictions aim to regulate plasma phosphate and potassium concentrations and prevent the adverse effects of hyperphosphatemia or hyperkalemia. However, individual responses to nutrition are known to vary, highlighting the need for personalized recommendations rather than relying solely on general guidelines. In this study, our objective was to develop a Bayesian hierarchical multivariate model that estimates the individual effects of nutrients on plasma concentrations and to present a recommendation algorithm that utilizes this model to infer personalized dietary intakes capable of achieving normal ranges for all considered concentrations. Considering the limited research on the reactions of ESRD patients, we collected dietary intake data and corresponding laboratory analyses from a cohort of 37 patients. The collected data were used to estimate the common hierarchical model, from which personalized models of the patients’ diets and individual reactions were extracted. The application of our recommendation algorithm revealed substantial variations in phosphorus and potassium intakes recommended for each patient. These personalized recommendations deviate from the general guidelines, suggesting that a notably richer diet may be proposed for certain patients to mitigate the risk of malnutrition. Furthermore, all the participants underwent either hospital, home, or peritoneal dialysis treatments. We explored the impact of treatment type on nutritional reactions by incorporating it as a nested level in the hierarchical model. Remarkably, this incorporation improved the fit of the nutritional effect model by a notable reduction in the normalized root mean square error (NRMSE) from 0.078 to 0.003. These findings highlight the potential for personalized dietary modifications to optimize nutritional status, enhance patient outcomes, and mitigate the risk of malnutrition in the ESRD population.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3