Untargeted metabolomics analysis reveals the metabolic disturbances and exacerbation of oxidative stress in recurrent spontaneous abortion

Author:

Wu AiNingORCID,Zhao YanHui,Yu RongXin,Zhou JianXing,Tuo YaORCID

Abstract

Background Recurrent spontaneous abortion (RSA) is characterized by the occurrence of two or more consecutive spontaneous abortions, with a rising prevalence among pregnant women and significant implications for their physical and mental well-being. The multifaceted etiology of RSA has posed challenges in unraveling the molecular mechanisms underlying that underlie its pathogenesis. Oxidative stress and immune response have been identified as pivotal factors in the development of its condition. Methods Eleven serum samples from healthy pregnant women and 17 from RSA were subjected to liquid chromatography/mass spectrometry (LC-MS) analysis. Multivariate statistical analysis was employed to excavate system-level characterization of the serum metabolome. The measurement of seven oxidative stress products, namely superoxide dismutase (SOD), catalase (CAT), malonaldehyde (MDA), glutathione (GPx), glutathione peroxidase (GSH), oxidized glutathione (GSSG), heme oxygenase (HO-1), was carried out using ELISA. Results Through the monitoring of metabolic and lipid alternations during RSA events, we have identified 816 biomarkers that were implicated in various metabolic pathways, including glutathione metabolism, phosphonate and phosphinate metabolism, nucleotide metabolism, sphingolipid metabolism, lysine degradation and purine metabolism, etc. These pathways have been found to be closely associated with the progression of the disease. Our finding indicated that the levels of MDA and HO-1 were elevated in the RSA group compared to the control group, whereas SOD, CAT and GPx exhibited a contrary pattern. However, no slight difference was observed in GSH and GSSG levels between the RSA group and the control group. Conclusion The manifestation of RSA elicited discernible temporal alternations in the serum metabolome and biochemical markers linked to the metabolic pathways of oxidative stress and immune response. Our investigation furnished a more comprehensive analytical framework encompassing metabolites and enzymes associated with oxidative stress. This inquiry furnished a more nuanced comprehension of the pathogenesis of RSA and established the ground work for prognostication and prophylaxis.

Funder

Technology Engineering Million Project of the Affiliated Hospital of Inner Mongolia Medical University

Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region

Inner Mongolia natural science foundation

Doctoral Fund Project of Affiliated Hospital of Inner Mongolia Medical University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference48 articles.

1. Recurrent miscarriage: current concepts in diagnosis and treatment;B Toth;J Reprod Immunol,2010

2. Environment and Female Reproductive Health;H Zhang;Adv Exp Med Biol,2021

3. Metabolomics: beyond biomarkers and towards mechanisms;CH Johnson;Nat Rev Mol Cell Biol,2016

4. Metabolomics activity screening for identifying metabolites that modulate phenotype;C Guijas;Nat Biotechnol,2018

5. Liquid Chromatography/Mass Spectrometry based serum metabolomics study on recurrent abortion women with antiphospholipid syndrome.;L Zhang;Plos One.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3