Subsurface fracturing of sedimentary stones caused by bullet impacts

Author:

Campbell OliverORCID,Blenkinsop TomORCID,Mol Lisa,Gilbert Oscar

Abstract

The immovable nature of built heritage means that it is particularly vulnerable during times of armed conflict. Although impacts from small arms and shrapnel leave relatively inconspicuous impact scars, they elevate the risk of future stone deterioration. This study investigates the subsurface damage caused by bullet impacts, which is not apparent from surface inspection, in order to better understand the geometry and mechanics of this form of conflict damage to heritage. Controlled firearm experiments were conducted to simulate conflict damage to sandstone and limestone buildings. The bullet impacts created conical fractures or zones of increased fracture intensity below the impact, radial fractures, and spallation, in addition to a crater. Dynamic fracture distinguishes the formation of these features from quasi static cone crack experiments, while the lack of a shockwave differentiates these bullet impacts from hypervelocity experiments. Damage was created by momentum transfer from the bullet, so that differences in target properties had large effects on the nature of the damage. The crater in the limestone target was almost an order of magnitude deeper than the sandstone crater, and large open fractures formed in the limestone below the crater floor, compared with zones of increased fracture intensity in the sandstone target. Microstructural analysis of subsurface damage showed that fracture intensity decreased with increasing distance from the impact centre, suggesting that regions proximal to the impact are at increased risk of future deterioration. Conical subsurface fractures dipping away from the impact beneath multiple impact craters could link up, creating a continuous fracture network. By providing pathways for moisture and other weathering agents, fractures enlarge the region at increased risk of deterioration. Their lack of surface expression makes understanding their formation a vital part of future surveying and post conflict assessments.

Funder

Leverhulme Trust

Cardiff University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference58 articles.

1. Clark M, Barros G, Stepanenko K. Russian Offensive Campaign Assessment, February 27, 2022. 2022.

2. MKIP. Resource for collecting evidence of crimes against humanity and culture by the Russian army. [Internet]. The Ministry of Culture and Information Policy of Ukraine. 2022 [cited 2022 Apr 24]. https://culturecrimes.mkip.gov.ua/

3. Bullet impacts and built heritage damage 1640–1939;L Mol;Herit Sci,2018

4. Permeability and Surface Hardness Surveying of Stone Damaged by Ballistic Impact;O Gilbert;Heritage,2019

5. Surface and Subsurface Damage Caused by Bullet Impacts into Sandstone;O Campbell;Geosciences,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3