Has-miR-199a-3p/RELA/SCD inhibits immune checkpoints in AMD and promotes macrophage-mediated inflammation and pathological angiogenesis through lipid metabolism pathway: A computational analysis

Author:

Jiang Jiang,Wang Shu,Li Yun,Wang Yi,Liao RongfengORCID

Abstract

More and more evidence shows that abnormal lipid metabolism leads to immune system dysfunction in AMD and promotes the occurrence of AMD by changing the homeostasis of ocular inflammation. However, the molecular mechanism underlying the effect of lipid metabolism on the phenotype and function of macrophages is still unclear, and the mechanism of association between AMD and cancer and COVID-19 has not been reported. The purpose of this study is to explore the interaction between lipid metabolism related genes, ferroptosis related genes and immunity in AMD, find out the key genes that affect the ferroptosis of AMD through lipid metabolism pathway and the molecular mechanism that mediates the action of macrophages, and find out the possible mechanism of lipid metabolism and potential co-therapeutic targets between AMD and cancer and COVID-19, so as to improve treatment decision-making and clinical results. For the first time, we have comprehensively analyzed the fatty acid molecule related genes, ferroptosis related genes and immune microenvironment of AMD patients, and determined that mast cells and M1 macrophages are the main causes of AMD inflammation, and found that SCD is the core gene in AMD that inhibits ferroptosis through lipid metabolism pathway, and verified the difference in the expression of SCD in AMD in a separate external data set. Based on the analysis of the mechanism of action of the SCD gene, we found for the first time that Has-miR-199a-3p/RELA/SCD is the core axis of action of lipid metabolism pathway to inhibit the ferroptosis of AMD. By inhibiting the immune checkpoint, we can enhance the immune cell activity of AMD and lead to the transformation of macrophages from M2 to M1, thereby promoting the inflammation and pathological angiogenesis of AMD. At the same time, we found that ACOX2 and PECR, as genes for fatty acid metabolism, may regulate the expression of SCD during the occurrence and development of COVID-19, thus affecting the occurrence and development of AMD. We found that FASD1 may be a key gene for the joint action of AMD and COVID-19, and SCD regulates the immune infiltration of macrophages in glioma and germ line tumors. In conclusion, our results can provide theoretical basis for the pathogenesis of AMD, help guide the treatment of AMD patients and their potentially related diseases and help to design effective drug targets.

Publisher

Public Library of Science (PLoS)

Reference47 articles.

1. SD-OCT Biomarkers and the Current Status of Artificial Intelligence in Predicting Progression from Intermediate to Advanced AMD;I Damian;Life (Basel),2022

2. Construction of a ferroptosis-associated circRNA-miRNA-mRNA network in age-related macular degeneration;J Wu;Exp Eye Res224:109234.,2022

3. Signaling pathways and defense mechanisms of ferroptosis;J Liu;FEBS J289(22),2022

4. Macrophages and lipid metabolism;A Remmerie;Cell Immunol,2018

5. Effect of Humanin G (HNG) on inflammation in age-related macular degeneration (AMD);S Nashine;Aging (Albany NY),2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3