Mine water inrush source discrimination model based on KPCA-ISSA-KELM

Author:

Wang Wei,Cui XinchaoORCID,Qi Yun,Xue Kailong,Liang Ran,Sun Zhipeng,Tao Hongjing

Abstract

In order to ensure the safety of coal mine production, a mine water source identification model is proposed to improve the accuracy of mine water inrush source identification and effectively prevent water inrush accidents based on kernel principal component analysis (KPCA) and improved sparrow search algorithm (ISSA) optimized kernel extreme learning machine (KELM). Taking Zhaogezhuang mine as the research object, firstly, Na+, Ca2+, Mg2+, Cl-, SO2- 4 and HCO- 3 were selected as evaluation indexes, and their correlation was analyzed by SPSS27 software, with reducing the dimension of the original data by KPCA. Secondly, the Sine Chaotic Mapping, dynamic adaptive weights, and Cauchy Variation and Reverse Learning were introduced to improve the Sparrow Search Algorithm (SSA) to strengthen global search ability and stability. Meanwhile, the ISSA was used to optimize the kernel parameters and regularization coefficients in the KELM to establish a mine water inrush source discrimination model based on the KPCA-ISSA-KELM. Then, the mine water source data are input into the model for discrimination in compared with discrimination results of KPCA-SSA-KELM, KPCA-KELM, ISSA-KELM, SSA-KELM and KELM models. The results of the study show as follows: The discrimination results of the KPCA-ISSA-KELM model are in agreement with the actual results. Compared with the other models, the accuracy of the KPCA-ISSA-KELM model is improved by 8.33%, 12.5%, 4.17%, 21.83%, and 25%, respectively. Finally, when these models were applied to discriminate water sources in a coal mine in Shanxi, and the misjudgment rates of each model were 28.57%, 19.05%, 14.29%, 23.81%, 9.52% and 4.76%, respectively. From this, the KPCA-ISSA-KLEM model is the most accurate about discrimination and significantly better than other models in other evaluation indicators, verifying the universality and stability of the model. It can be effectively applied to the discrimination of inrush water sources in mines, providing important guarantees for mine safety production.

Funder

Shanxi Basic Research Program (Free Exploration) Project

Shanxi Province Higher Education Science and Technology Innovation Plan Project

Basic Research Project of Shanxi Datong University

Graduate Education Innovation Project of Shanxi Datong University

Publisher

Public Library of Science (PLoS)

Reference30 articles.

1. Mine water inrush source identification model based on KPCA-GWO-SVM [J].;HUA Xingyue;Safety in Coal Mines,2023

2. Analysis on the characteristics of correlative factors in coal mine water disasters from 2011 to 2020[J].;JING Guoxun;Journal of safety and Environment,2022

3. Identification method of mine water inrush source based on IWOA-HKELM[J];SHAO Liangshan;China Safety Science Journal,2019

4. A Review of Reservoir Operation Optimisations: from Traditional Models to Metaheuristic Algorithms[J].;V Lai;Archives of Computational Methods in Engineering,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3