Weather or not—Global climate databases: Reliable on tropical mountains?

Author:

Hemp AndreasORCID,Hemp Judith

Abstract

Global, spatially interpolated climate datasets such as WorldClim and CHELSA, widely used in research, are based on station data, which are rare in tropical mountains. However, such biodiversity hotspots are of high ecological interest and require accurate data. Therefore, the quality of such gridded datasets needs to be assessed. This poses a kind of dilemma, as proving the reliability of these potentially weakly modelled data is usually not possible due to the lack of stations. Using a unique climate dataset with 170 stations, mainly from the montane and alpine zones of sixteen mountains in Tanzania including Kilimanjaro, we show that the accuracy of such datasets is very poor. Not only is the maximum amount of mean annual precipitation drastically underestimated (partly more than 50%), but also the elevation of the precipitation maximum deviates up to 850m. Our results show that, at least in tropical regions, they should be used with greater caution than before.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3