Facial electromyography during exercise using soft electrode array: A feasibility study

Author:

Ibrahim RawanORCID,Ketko Itay,Scheinowitz Mickey,Hanein YaelORCID

Abstract

The use of wearable sensors for real-time monitoring of exercise-related measures has been extensively studied in recent years (e.g., performance enhancement, optimizing athlete’s training, and preventing injuries). Surface electromyography (sEMG), which measures muscle activity, is a widely researched technology in exercise monitoring. However, due to their cumbersome nature, traditional sEMG electrodes are limited. In particular, facial EMG (fEMG) studies in physical training have been limited, with some scarce evidence suggesting that fEMG may be used to monitor exercise-related measurements. Altogether, sEMG recordings from facial muscles in the context of exercise have been examined relatively inadequately. In this feasibility study, we assessed the ability of a new wearable sEMG technology to measure facial muscle activity during exercise. Six young, healthy, and recreationally active participants (5 females), performed an incremental cycling exercise test until exhaustion, while facial sEMG and vastus lateralis (VL) EMG were measured. Facial sEMG signals from both natural expressions and voluntary smiles were successfully recorded. Stable recordings and high-resolution facial muscle activity mapping were achieved during different exercise intensities until exhaustion. Strong correlations were found between VL and multiple facial muscles’ activity during voluntary smiles during exercise, with statistically significant coefficients ranging from 0.80 to 0.95 (p<0.05). This study demonstrates the feasibility of monitoring facial muscle activity during exercise, with potential implications for sports medicine and exercise physiology, particularly in monitoring exercise intensity and fatigue.

Funder

Israel Science Foundation

Israel Defense Forces (IDF) Medical Corps and Directorate of Defense Research & Development, Israeli Ministry of Defense

Publisher

Public Library of Science (PLoS)

Reference33 articles.

1. A Review of Recent Advances in Vital Signals Monitoring of Sports and Health via Flexible Wearable Sensors;W Sun;Sensors,2022

2. Validity and Reliability of Physiological Data in Applied Settings Measured by Wearable Technology: A Rapid Systematic Review;B Carrier;Technologies,2020

3. Fatigue Monitoring Through Wearables: A State-of-the-Art Review;NR Adão Martins;Frontiers in Physiology,2021

4. Wearable sensors for monitoring the internal and external workload of the athlete;DR Seshadri;npj Digital Medicine,2019

5. The influence of mental fatigue on facial EMG activity during a simulated workday;IJT Veldhuizen;Biological Psychology,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3