Incised valleys drive distinctive oceanographic processes and biological assemblages within rhodolith beds

Author:

Castro Guilherme M.ORCID,Vargens Rafaela P.,Carlos-Júnior Lélis A.ORCID,Cardoso Fernando C.ORCID,Salomon Paulo S.,Tenório Márcio M. B.,Bastos Alex C.,Oliveira Natacha,Ghisolfi Renato D.,Cordeiro Ralf T. S.,Moura Rodrigo L.ORCID

Abstract

Continental shelves encompass gently sloped seascapes that are highly productive and intensively exploited for natural resources. Islands, reefs and other emergent or quasi-emergent features punctuate these shallow (<100 m) seascapes and are well known drivers of increased biomass and biodiversity, as well as predictors of fishing and other human uses. On the other hand, relict mesoscale geomorphological features that do not represent navigation hazards, such as incised valleys (IVs), remain poorly charted. Consequently, their role in biophysical processes remains poorly assessed and sampled. Incised valleys are common within rhodolith beds (RBs), the most extensive benthic habitat along the tropical and subtropical portions of the mid and outer Brazilian shelf. Here, we report on a multi-proxy assessment carried out in a tropical-subtropical transition region (~20°S) off Eastern Brazil, contrasting physicochemical and biological variables in IVs and adjacent RBs. Valleys interfere in near bottom circulation and function as conduits for water and propagules from the slope up to the mid shelf. In addition, they provide a stable and structurally complex habitat for black corals and gorgonians that usually occur in deeper water, contrasting sharply with the algae-dominated RB. Fish richness, abundance and biomass were also higher in the IVs, with small planktivores and large-bodied, commercially important species (e.g. groupers, snappers and grunts) presenting smaller abundances or being absent from RBs. Overall, IVs are unique and vulnerable habitats that sustain diverse assemblages and important ecosystem processes. As new IVs are detected by remote sensing or bathymetric surveys, they can be incorporated into regional marine management plans as conservation targets and priority sites for detailed in situ surveys.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Renova

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3