Auditory rhythm complexity affects cardiac dynamics in perception and synchronization

Author:

Wright Shannon E.ORCID,Palmer Caroline

Abstract

Accurate perception and production of auditory rhythms are key for human behaviors such as speech and music. Auditory rhythms in music range in their complexity: complex rhythms (based on non-integer ratios between successive tone durations) are more difficult to perceive and produce than simple rhythms (based on integer ratios). The physiological activity supporting this behavioral difference is not well understood. In a within-subjects design, we addressed how rhythm complexity affects cardiac dynamics during auditory perception and production. Musically trained adults listened to and synchronized with simple and complex auditory rhythms while their cardiac activity was recorded. Participants identified missing tones in the rhythms during the Perception condition and tapped on a keyboard to synchronize with the rhythms in the Synchronization condition. Participants were equally accurate at identifying missing tones in simple and complex rhythms during the Perception condition. Tapping synchronization was less accurate and less precise with complex rhythms than with simple rhythms. Linear cardiac analyses showed a slower mean heart rate and greater heart rate variability during perception than synchronization for both simple and complex rhythms; only nonlinear recurrence quantification analyses reflected cardiac differences between simple and complex auditory rhythms. Nonlinear cardiac dynamics were also more deterministic (predictable) during rhythm perception than synchronization. Individual differences during tapping showed that greater heart rate variability was correlated with poorer synchronization. Overall, these findings suggest that linear measures of musicians’ cardiac activity reflect global task variability while nonlinear measures additionally reflect stimulus rhythm complexity.

Funder

Natural Sciences and Engineering Research Council

Canada Research Chair

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3