A pilot heat-health warning system co-designed for a subtropical city

Author:

Lung Shih-Chun CandiceORCID,Liou Ming-Lone,Yeh Jou-Chen JoyORCID,Hwang Jing-Shiang

Abstract

Significant heat-related casualties underlie the urgency of establishing a heat-health warning system (HHWS). This paper presents an evidence-based pilot HHWS developed for Taipei City, Taiwan, through a co-design process engaging stakeholders. In the co-design process, policy concerns related to biometeorology, epidemiology and public health, and risk communication aspects were identified, with knowledge gaps being filled by subsequent findings. The biometeorological results revealed that Taipei residents were exposed to wet-bulb globe temperature (WBGT) levels of health concern for at least 100 days in 2016. The hot spots and periods identified using WBGT would be missed out if using temperature, underlining the importance of adopting an appropriate heat indicator. Significant increases in heat-related emergency were found in Taipei at WBGT exceeding 36°C with reference-adjusted risk ratio (RaRR) of 2.42, taking 30°C as the reference; and residents aged 0–14 had the highest risk enhancement (RaRR = 7.70). As for risk communication, occurring frequency was evaluated to avoid too frequent warnings, which would numb the public and exhaust resources. After integrating knowledge and reconciling the different preferences and perspectives, the pilot HHWS was co-implemented in 2018 by the science team and Taipei City officials; accompanying responsive measures were formulated for execution by ten city government departments/offices. The results of this pilot served as a useful reference for establishing a nationwide heat-alert app in 2021/2022. The lessons learnt during the interactive co-design processes provide valuable insights for establishing HHWSs worldwide.

Funder

Taipei City Government

Academia Sinica

National Science and Technology Council

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3