DNMT3A-mediated epigenetic silencing of SOX17 contributes to endothelial cell migration and fibroblast activation in wound healing

Author:

Yu XiaopingORCID,Ma XiaotingORCID,Zhou JunliORCID

Abstract

Background Wound healing, especially impaired chronic wound healing, poses a tremendous challenge for modern medicine. Understanding the molecular mechanisms underlying wound healing is essential to the development of novel therapeutic strategies. Methods A wound-healing mouse model was established to analyze histopathological alterations during wound healing, and the expression of SRY-box transcription factor 17 (SOX17), DNA methyltransferase 3 alpha (DNMT3A), and a specific fibroblast marker S100 calcium-binding protein A4 (S100A4) in wound skin tissues was tested by immunofluorescence (IF) assay. Cell proliferation and migration were evaluated using 5-ethynyl-2′-deoxyuridine (EdU) and Transwell migration assays. RT-qPCR and western blotting were used to measure RNA and protein expression. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the secretion of transforming growth factor-beta (TGF-β). Chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) and DNA pull-down assays were performed to confirm the interaction between DNMT3A and the CpG island of the SOX17 promoter. Promoter methylation was examined by pyrosequencing. Results SOX17 and DNMT3A expression were regularly regulated during the different phases of wound healing. SOX17 knockdown promoted HUVEC migration and the production and release of TGF-β. Through establishing an endothelial cells-fibroblasts co-culture model, we found that SOX17 knockdown in HUVECs activated HFF-1 fibroblasts, which expressed α-smooth muscle actin (α-SMA) and type I collagen (COL1). DNMT3A overexpression reduces SOX17 mRNA levels. ChIP-qPCR and DNA pull-down assays verified the interaction between DNMT3A and CpG island in the SOX17 promoter region. Pyrosequencing confirmed that DNMT3A overexpression increased the methylation level of the SOX17 promoter. Conclusion DNMT3A-mediated downregulation of SOX17 facilitates wound healing by promoting endothelial cell migration and fibroblast activation.

Funder

grants from Science and Technology Program of Gansu Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3