Abstract
Background
Artificial intelligence (AI)-aided analysis of chest CT expedites the quantification of abnormalities and may facilitate the diagnosis and assessment of the prognosis of subjects with COVID-19.
Objectives
This study investigates the performance of an AI-aided quantification model in predicting the clinical outcomes of hospitalized subjects with COVID-19 and compares it with radiologists’ performance.
Subjects and methods
A total of 90 subjects with COVID-19 (men, n = 59 [65.6%]; age, 52.9±16.7 years) were recruited in this cross-sectional study. Quantification of the total and compromised lung parenchyma was performed by two expert radiologists using a volumetric image analysis software and compared against an AI-assisted package consisting of a modified U-Net model for segmenting COVID-19 lesions and an off-the-shelf U-Net model augmented with COVID-19 data for segmenting lung volume. The fraction of compromised lung parenchyma (%CL) was calculated. Based on clinical results, the subjects were divided into two categories: critical (n = 45) and noncritical (n = 45). All admission data were compared between the two groups.
Results
There was an excellent agreement between the radiologist-obtained and AI-assisted measurements (intraclass correlation coefficient = 0.88, P < 0.001). Both the AI-assisted and radiologist-obtained %CLs were significantly higher in the critical subjects (P = 0.009 and 0.02, respectively) than in the noncritical subjects. In the multivariate logistic regression analysis to distinguish the critical subjects, an AI-assisted %CL ≥35% (odds ratio [OR] = 17.0), oxygen saturation level of <88% (OR = 33.6), immunocompromised condition (OR = 8.1), and other comorbidities (OR = 15.2) independently remained as significant variables in the models. Our proposed model obtained an accuracy of 83.9%, a sensitivity of 79.1%, and a specificity of 88.6% in predicting critical outcomes.
Conclusions
AI-assisted measurements are similar to quantitative radiologist-obtained measurements in determining lung involvement in COVID-19 subjects.
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献