Emergent invariance and scaling properties in the collective return dynamics of a stock market

Author:

Miyahara HideyukiORCID,Qian Hai,Holur Pavan S.ORCID,Roychowdhury Vwani

Abstract

A key metric to determine the performance of a stock in a market is its return over different investment horizons (τ). Several works have observed heavy-tailed behavior in the distributions of returns in different markets, which are observable indicators of underlying complex dynamics. Such prior works study return distributions that are marginalized across the individual stocks in the market, and do not track statistics about the joint distributions of returns conditioned on different stocks, which would be useful for optimizing inter-stock asset allocation strategies. As a step towards this goal, we study emergent phenomena in the distributions of returns as captured by their pairwise correlations. In particular, we consider the pairwise (between stocks i, j) partial correlations of returns with respect to the market mode, ci,j(τ), (thus, correcting for the baseline return behavior of the market), over different time horizons (τ), and discover two novel emergent phenomena: (i) the standardized distributions of the ci,j(τ)’s are observed to be invariant of τ ranging from from 1000min (2.5 days) to 30000min (2.5 months); (ii) the scaling of the standard deviation of ci,j(τ)’s with τ admits good fits to simple model classes such as a power-law τ−λ or stretched exponential function e - τ β (λ, β > 0). Moreover, the parameters governing these fits provide a summary view of market health: for instance, in years marked by unprecedented financial crises—for example 2008 and 2020—values of λ (scaling exponent) are substantially lower. Finally, we demonstrate that the observed emergent behavior cannot be adequately supported by existing generative frameworks such as single- and multi-factor models. We introduce a promising agent-based Vicsek model that closes this gap.

Publisher

Public Library of Science (PLoS)

Reference33 articles.

1. Resource Letter CS–1: Complex Systems;MEJ Newman;American Journal of Physics,2011

2. What is a complex system?;J Ladyman;European Journal for Philosophy of Science,2013

3. Introduction to Econophysics

4. Levels of complexity in financial markets;G Bonanno;Physica A: Statistical Mechanics and its Applications,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3