Prediction of hydrological and water quality data based on granular-ball rough set and k-nearest neighbor analysis

Author:

Dong Limei,Zuo Xinyu,Xiong YipingORCID

Abstract

Hydrological and water quality datasets usually encompass a large number of characteristic variables, but not all of these significantly influence analytical outcomes. Therefore, by wisely selecting feature variables with rich information content and removing redundant features, it not only can the analysis efficiency be improved, but the model complexity can also be simplified. This paper considers introducing the granular-ball rough set algorithm for feature variable selection and combining it with the k-nearest neighbor method and back propagation network to analyze hydrological and water quality data, thus promoting overall and fused inspection. The results of hydrological water quality data analysis show that the proposed method produces better results compared to using a standalone k-nearest neighbor regressor.

Publisher

Public Library of Science (PLoS)

Reference69 articles.

1. Harmful algal blooms: causes, impacts and detection;K G Sellner;Journal of Industrial Microbiology and Biotechnology,2003

2. Harmful algal blooms: a global overview;G M Hallegraeff;Manual on harmful marine microalgae,2003

3. Long-term harmful algal blooms and nutrients patterns affected by climate change and anthropogenic pressures in the zhanjiang bay, China;P Zhang;Frontiers in Marine Science,2022

4. Patterns of distribution and abundance of large brown algae and invertebrate herbivores in subtidal regions of northern New Zealand;J H Choat;Journal of experimental marine biology and ecology,1982

5. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance;V S Smetacek;Marine biology,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3