Machine vision model for detection of foreign substances at the bottom of empty large volume parenteral

Author:

Yuan Pi,Li ChenORCID,Tang Peng,Yuan Bin,Yin Yongjing

Abstract

Empty large volume parenteral (LVP) bottle has irregular shape and narrow opening, and its detection accuracy of the foreign substances at the bottom is higher than that of ordinary packaging bottles. The current traditional detection method for the bottom of LVP bottles is to directly use manual visual inspection, which involves high labor intensity and is prone to visual fatigue and quality fluctuations, resulting in limited applicability for the detection of the bottom of LVP bottles. A geometric constraint-based detection model (GCBDM) has been proposed, which combines the imaging model and the shape characteristics of the bottle to construct a constraint model of the imaging parameters, according to the detection accuracy and the field of view. Then, the imaging model is designed and optimized for the detection. Further, the generalized GCBDM has been adopted to different bottle bottom detection scenarios, such as cough syrup and capsule medicine bottles by changing the target parameters of the model. The GCBDM, on the one hand, can avoid the information at the bottom being blocked by the narrow opening in the imaging optical path. On the other hand, by calculating the maximum position deviation between the center of visual inspection and the center of the bottom, it can provide the basis for the accuracy design of the transmission mechanism in the inspection, thus further ensuring the stability of the detection.

Funder

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Hangzhou City Agriculture and Social Development General Project

Publisher

Public Library of Science (PLoS)

Reference31 articles.

1. Particulate matter in injectable drug products;S. E. Langille;Pda Journal of Pharmaceutical Science & Technology,2013

2. Automated Machine Vision System for Liquid Particle Inspection of Pharmaceutical Injection;Z Hui;IEEE Transactions on Instrumentation and Measurement,2018

3. On-line detection of foreign substances in glass bottles filled with transfusion solution through computer vision;J Lu;International Conference on Information & Automation,2008

4. A Machine Vision Intelligent Inspector for Injection;B Zhou;Workshop on Computational Intelligence & Industrial Application,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3