Block mapping and dual-matrix-based watermarking for image authentication with self-recovery capability

Author:

Li XuejingORCID,Chen Qiancheng,Chu Runfu,Wang Wei

Abstract

Numerous image authentication techniques have been devised to address the potential security issue of malicious tampering with image content since digital images can be easily duplicated, modified, transformed and diffused via the Internet transmission. However, the existing works still remain many shortcomings in terms of the recovery incapability and detection accuracy with extensive tampering. To improve the performance of tamper detection and image recovery, we present a block mapping and dual-matrix-based watermarking scheme for image authentication with self-recovery capability in this paper. The to-be-embedded watermark information is composed of the authentication data and recovery data. The Authentication Feature Composition Calculation algorithm is proposed to generate the authentication data for image tamper detection and localization. Furthermore, the recovery data for tampered region recovery is comprised of self-recovery bits and mapped-recovery bits. The Set Partition in Hierarchical Trees encoding algorithm is applied to obtain the self-recovery bits, whereas the Rehashing Model-based Block Mapping algorithm is proposed to obtain the mapped-recovery bits for retrieving the damaged codes caused by tampering. Subsequently, the watermark information is embedded into the original image as digital watermarking with the guidance of a dual-matrix. The experimental results demonstrate that comparing with other state-of-the-art works, our proposed scheme not only improves the performance in recovery, but also extends the limitation of tampering rate up to 90%. Furthermore, it obtains a desirable image quality above 40 dB, large watermark payload up to 3.169 bpp, and the effective resistance to malicious attack, such as copy-move and collage attacks.

Funder

the Youth Research Fund of Anhui University of Information Technology

Publisher

Public Library of Science (PLoS)

Reference36 articles.

1. Secure and Robust Two-Phase Image Authentication;SAH Tabatabaei;IEEE Transactions on Multimedia,2015

2. Hybrid LSTM and Encoder–Decoder Architecture for Detection of Image Forgeries;JH Bappy;IEEE Transactions on Image Processing,2019

3. A Semi-fragile Reversible Watermarking for Authenticating 3D Models Based on Virtual Polygon Projection and Double Modulation Strategy;F Peng;IEEE Transactions on Multimedia,2021

4. Multi-Scale Fusion for Improved Localization of Malicious Tampering in Digital Images;P Korus;IEEE Transactions on Image Processing,2016

5. Sequential and Patch Analyses for Object Removal Video Forgery Detection and Localization;M Aloraini;IEEE Transactions on Circuits and Systems for Video Technology,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image authentication with exclusive-OR operated optical vortices;Journal of the Optical Society of America A;2024-06-18

2. Enhancing Medical Image Security through Steganography and Ensemble Deep Authentication;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3