Predicting asthma using imbalanced data modeling techniques: Evidence from 2019 Michigan BRFSS data

Author:

Budhathoki NirajanORCID,Bhandari Ramesh,Bashyal Suraj,Lee Carl

Abstract

Studies in the past have examined asthma prevalence and the associated risk factors in the United States using data from national surveys. However, the findings of these studies may not be relevant to specific states because of the different environmental and socioeconomic factors that vary across regions. The 2019 Behavioral Risk Factor Surveillance System (BRFSS) showed that Michigan had higher asthma prevalence rates than the national average. In this regard, we employ various modern machine learning techniques to predict asthma and identify risk factors associated with asthma among Michigan adults using the 2019 BRFSS data. After data cleaning, a sample of 10,337 individuals was selected for analysis, out of which 1,118 individuals (10.8%) reported having asthma during the survey period. Typical machine learning techniques often perform poorly due to imbalanced data issues. To address this challenge, we employed two synthetic data generation techniques, namely the Random Over-Sampling Examples (ROSE) and Synthetic Minority Over-Sampling Technique (SMOTE) and compared their performances. The overall performance of machine learning algorithms was improved using both methods, with ROSE performing better than SMOTE. Among the ROSE-adjusted models, we found that logistic regression, partial least squares, gradient boosting, LASSO, and elastic net had comparable performance, with sensitivity at around 50% and area under the curve (AUC) at around 63%. Due to ease of interpretability, logistic regression is chosen for further exploration of risk factors. Presence of chronic obstructive pulmonary disease, lower income, female sex, financial barrier to see a doctor due to cost, taken flu shot/spray in the past 12 months, 18–24 age group, Black, non-Hispanic group, and presence of diabetes are identified as asthma risk factors. This study demonstrates the potentiality of machine learning coupled with imbalanced data modeling approaches for predicting asthma from a large survey dataset. We conclude that the findings could guide early screening of at-risk asthma patients and designing appropriate interventions to improve care practices.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. Centers for Disease Control and Prevention. Asthma. https://www.cdc.gov/asthma/default.htm. Accessed on July 15, 2021

2. Centers for Disease Control and Prevention. BRFSS Asthma Prevalence Data. https://www.cdc.gov/asthma/brfss/default.htm Accessed on July 19, 2021

3. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes-ELSA-Brasil: accuracy study;A. R. Olivera;Sao Paulo Medical Journal,2017

4. Ahmed, M. R., Ali, M. A., Roy, J., Ahmed, S., & Ahmed, N. (2020, December). Breast Cancer Risk Prediction based on Six Machine Learning Algorithms. In 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) (pp. 1–5). IEEE.

5. Argumentative Comparative Analysis of Machine Learning on Coronary Artery Disease;K. Dahal;Open Journal of Statistics,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3